(Figure shows how well gases in the atmosphere absorb different wavelengths of radiation)

Notes: Components of the Atmosphere Not Shown in the Figure

Gases

- N₂ (nitrogen): 78% of dry air
 - Absorbs no radiation (of any wavelength)
- o Ar (argon): 1% of dry air
 - Absorbs no radiation (of any wavelength)

Clouds

- Made of tiny droplets of liquid water or ice crystals
- Absorb *all* wavelengths of longwave infrared radiation well
- Reflect most solar radiation well

Notes on Absorption Spectra

- Absorption by ozone (O_3) and oxygen (O_2)
 - o Ozone:
 - absorbs a little LWIR radiation
 - absorbs most of the UV radiation from the sun
 - o Oxygen:
 - absorbs a little UV (but nothing else)

Notes on Absorption Spectra

(cont'd)

- Atmospheric window:
 - Wavelengths of longwave infrared radiation that no gases absorb well
 - Without clouds, these wavelengths emitted by the earth's surface escape to space, while most other wavelengths are absorbed
 - However, clouds do absorb these wavelengths (and all other LWIR radiation emitted by the earth's surface)

Notes: (Rayleigh) Scattering

- Scattering redirects radiation
 - Air scatters mostly just UV and visible light (especially blue light) from the sun
 - Some scattered radiation is redirected back to space (contributes to total solar radiation reflected away by the earth)
 - The rest reaches the earth's surface (but not from the same direction as *direct* rays from the sun)
 - As a result, the sky looks blue (scattered blue light comes from all directions that we look)
 - and the sun (direct rays) looks yellow (scattering redirects blue out of the direct rays from the sun, and the result looks yellow)